Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms
نویسندگان
چکیده
[1] Upper mantle seismic velocity structures in both vertical and horizontal directions are key to understanding the structure and mechanics of tectonic plates. Recent deployment of the USArray Transportable Array (TA) in the Midwestern United States provides an extraordinary regional earthquake data set to investigate such velocity structure beneath the stable North American craton. In this paper, we choose an Mw5.1 Canadian earthquake in the Quebec area, which is recorded by about 400 TA stations, to examine the P wave structures between the depths of 150 km to 800 km. Three smaller Midwestern earthquakes at closer distance to the TA are used to investigate vertical and horizontal variations in P velocity between depths of 40 km to 150 km. We use a grid-search approach to find the best 1-D model, starting with the previously developed S25 regional model. The results support the existence of an 8° discontinuity in P arrivals caused by a negative velocity gradient in the lithosphere between depths of 40 km to 120 km followed by a small ( 1%) jump and then a positive gradient down to 165 km. The P velocity then decreases by 2% from 165 km to 200 km, and we define this zone as the regional lithosphere-asthenosphere boundary (LAB). Beneath northern profiles, waves reflected from the 410 discontinuity (410) are delayed by up to 1 s relative to those turning just below the 410, which we explain by an anomaly just above the discontinuity with P velocity reduced by 3%. The 660 discontinuity (660) appears to be composed of two smaller velocity steps with a separation of 16 km. The inferred low-velocity anomaly above 410 may indicate high water concentrations in the transition zone, and the complexity of the 660 may be related to Farallon slab segments that have yet to sink into the deep mantle.
منابع مشابه
Mantle structure beneath the western United States and its implications for convection processes
[1] We present tomographic images of the mantle structure beneath the western United States. Our Dynamic North America Models of P and S velocity structure (DNA07‐P and DNA07‐S) use teleseismic body waves recorded at ∼600 seismic stations provided by the Earthscope Transportable Array and regional networks. DNA07‐P and ‐S benefit from the unprecedented aperture of the network while maintaining ...
متن کاملJuan de Fuca subduction zone from a mixture of tomography and waveform modeling
[1] Seismic tomography images of the upper mantle structures beneath the Pacific Northwestern United States display a maze of high-velocity anomalies, many of which produce distorted waveforms evident in the USArray observations indicative of the Juan de Fuca (JdF) slab. The inferred location of the slab agrees quite well with existing contour lines defining the slab’s upper interface. Syntheti...
متن کاملVelocity variations in the uppermost mantle beneath the southern Sierra Nevada and Walker Lane
[1] We model Pn waveforms from two earthquakes in the southwestern United States (Mammoth Lakes, California, and western Nevada) to determine a velocity model of the crustal and mantle structure beneath the southern Sierra Nevada and Walker Lane. We derive a one-dimensional velocity model that includes a smooth crust-mantle transition east of Death Valley and extending south into the eastern Mo...
متن کاملImaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach
[1] Tomographic models based on hypothetically infinite frequency ray interpretation of teleseismic travel time shifts have revealed a region of relatively low P and S wave speeds extending from shallow mantle to 400 km depth beneath Iceland. In reality, seismic waves have finite frequency bandwidths and undergo diffractive wave front healing. The limitation in ray theory leaves large uncertain...
متن کاملLateral Variation of the Tibetan Lithospheric Structure Inferred from Teleseismic Waveforms
I present a teleseismic waveform study of the lithospheric structure beneath the Tibetan Plateau, using data collected during the 1991-1992 SinoUS Tibet seismic recording experiment. Crustal thickness at each of the 11 broadband stations is estimated from the differential travel time between the Moho P -to-S converted phase and direct P . I demonstrated that this estimation is not sensitive to ...
متن کامل